Digital Logic
Deep Understanding: 85 hours
Community
Digital Logic
2075 Boards
Section A
Answer any two questions.
The function to be implemented is F = Σ(1, 2, 3, 4, 8).
Given the highest minterm is 8, a minimum of 4 input variables are required. Let the inputs be A, B, C, D, where A is the Most Significant Bit (MSB).
The minterms in binary are:
m1: 0001 (A'B'C'D)
m2: 0010 (A'B'CD')
m3: 0011 (A'B'CD)
m4: 0100 (A'BC'D')
m8: 1000 (AB'C'D')
Implementation using a Decoder
A decoder converts n binary inputs into 2^n unique output lines, one for each minterm. To implement a sum-of-minterms function, a 2^n decoder is used, and the outputs corresponding to the desired minterms are connected to a multi-input OR gate.
- Component Selection: Since there are 4 input variables (A, B, C, D), a 4-to-16 line decoder is required. This decoder will have inputs A, B, C, D and 16 output lines, m0 to m15.
- Input Connection: Connect A, B, C, D to the decoder's input lines (typically A as MSB).
- Output Connection: The decoder's output lines corresponding to the minterms in F (m1, m2, m3, m4, m8) are connected as inputs to a 5-input OR gate.
- Function Output: The output of the OR gate will be the function F.
<<<GRAPHVIZ_START>>>
digraph DecoderImplementation {
rankdir=LR;
node [shape=box];
subgraph cluster_inputs {
label="Inputs";
A [label="A"];
B [label="B"];
C [label="C"];
D [label="D"];
}
Decoder [label="4-to-16 Decoder", shape=rect, width=1.5, height=2];
subgraph cluster_minterm_outputs {
label="Minterm Outputs";
m1 [label="m1"];
m2 [label="m2"];
m3 [label="m3"];
m4 [label="m4"];
m8 [label="m8"];
}
OR_gate [label="OR Gate", shape=oval, width=1.0];
F [label="F", shape=circle];
A -> Decoder;
B -> Decoder;
C -> Decoder;
D -> Decoder;
Decoder -> m1 [headlabel="Output 1"];
Decoder -> m2 [headlabel="Output 2"];
Decoder -> m3 [headlabel="Output 3"];
Decoder -> m4 [headlabel="Output 4"];
Decoder -> m8 [headlabel="Output 8"];
m1 -> OR_gate;
m2 -> OR_gate;
m3 -> OR_gate;
m4 -> OR_gate;
m8 -> OR_gate;
OR_gate -> F;
{rank=same; A B C D}
{rank=same; m1 m2 m3 m4 m8}
}
<<<GRAPHVIZ_END>>>
Implementation using a Multiplexer
A multiplexer (MUX) can implement an n-variable Boolean function using a 2^(n-1)-to-1 MUX. (n-1) variables are connected to the select lines, and the remaining variable (or its complement, 0, or 1) is connected to the data inputs based on the function's truth table.
-
Component Selection: For a 4-variable function (A, B, C, D), an 8-to-1 MUX is suitable. This MUX will have 3 select lines (S2, S1, S0) and 8 data inputs (I0 to I7).
-
Select Line Connection: The variables A, B, C are connected to the select lines (e.g., A=S2, B=S1, C=S0).
-
Data Input Derivation: The fourth variable, D, is used to determine the values for the data inputs (I0-I7). For each combination of A, B, C, the corresponding I input is set to D, D', 0, or 1 based on the function F(A,B,C,D).
A B C F(A,B,C,D=0) F(A,B,C,D=1) MUX Input 0 0 0 F(0000) = 0 F(0001) = 1 I0 = D 0 0 1 F(0010) = 1 F(0011) = 1 I1 = 1 0 1 0 F(0100) = 1 F(0101) = 0 I2 = D' 0 1 1 F(0110) = 0 F(0111) = 0 I3 = 0 1 0 0 F(1000) = 1 F(1001) = 0 I4 = D' 1 0 1 F(1010) = 0 F(1011) = 0 I5 = 0 1 1 0 F(1100) = 0 F(1101) = 0 I6 = 0 1 1 1 F(1110) = 0 F(1111) = 0 I7 = 0 -
Function Output: The output of the MUX is the function F.
<<<GRAPHVIZ_START>>>
digraph MuxImplementation {
rankdir=LR;
node [shape=box];
subgraph cluster_inputs {
label="Inputs";
A [label="A"];
B [label="B"];
C [label="C"];
D [label="D"];
D_inv [label="D'", shape=invtriangle];
Logic0 [label="0", shape=plaintext];
Logic1 [label="1", shape=plaintext];
}
MUX [label="8-to-1 Multiplexer\n(Select: S2=A, S1=B, S0=C)", shape=rect, width=2, height=2.5];
F [label="F", shape=circle];
A -> MUX [headlabel="S2"];
B -> MUX [headlabel="S1"];
C -> MUX [headlabel="S0"];
D -> MUX [headlabel="I0 (ABC=000)"];
Logic1 -> MUX [headlabel="I1 (ABC=001)"];
D_inv -> MUX [headlabel="I2 (ABC=010)"];
Logic0 -> MUX [headlabel="I3 (ABC=011)"];
D_inv -> MUX [headlabel="I4 (ABC=100)"];
Logic0 -> MUX [headlabel="I5 (ABC=101)"];
Logic0 -> MUX [headlabel="I6 (ABC=110)"];
Logic0 -> MUX [headlabel="I7 (ABC=111)"];
MUX -> F;
}
<<<GRAPHVIZ_END>>>
Implementation using a Programmable Logic Array (PLA)
A PLA consists of a programmable AND array and a programmable OR array. It implements sum-of-products expressions directly.
-
Minimize the Function: First, simplify the Boolean function F = Σ(1, 2, 3, 4, 8) using a K-map to obtain a minimal sum-of-products expression.
K-map for F(A,B,C,D):
CD
AB 00 01 11 10
00 | 0 | 1 | 1 | 1 | (m1, m3, m2)
01 | 1 | 0 | 0 | 0 | (m4)
11 | 0 | 0 | 0 | 0 |
10 | 1 | 0 | 0 | 0 | (m8)Prime Implicants:
- (m1, m3) = A'B'D
- (m2, m3) = A'B'C
- (m4) = A'BC'D' (Essential Prime Implicant)
- (m8) = AB'C'D' (Essential Prime Implicant)
To cover remaining minterms {m1, m2, m3}:
We can choose A'B'D (covers m1, m3) and A'B'CD' (m2).
Alternatively, A'B'C (covers m2, m3) and A'B'C'D (m1).
Both options result in 4 product terms. Let's use the first combination.Minimal Sum-of-Products:
F = A'B'D + A'B'CD' + A'BC'D' + AB'C'D' -
PLA Structure:
- Inputs: A, B, C, D and their complements A', B', C', D' are provided to the AND array.
- AND Array: Programmed to generate the four product terms:
- P1 = A'B'D
- P2 = A'B'CD'
- P3 = A'BC'D'
- P4 = AB'C'D'
- OR Array: Programmed to sum these product terms. A single OR gate combines P1, P2, P3, P4 to produce the final output F.
<<<GRAPHVIZ_START>>>
digraph PLAImplementation {
rankdir=LR;
node [shape=plaintext]; // Default shape for inputs
subgraph cluster_inputs {
label="Inputs";
A_in [label="A"];
B_in [label="B"];
C_in [label="C"];
D_in [label="D"];
A_not_in [label="A'"];
B_not_in [label="B'"];
C_not_in [label="C'"];
D_not_in [label="D'"];
}
subgraph cluster_and_array {
label="AND Array";
node [shape=and];
P1 [label="P1 = A'B'D"];
P2 [label="P2 = A'B'CD'"];
P3 [label="P3 = A'BC'D'"];
P4 [label="P4 = AB'C'D'"];
}
subgraph cluster_or_array {
label="OR Array";
node [shape=or];
F_out [label="F"];
}
// Connections from inputs to AND gates (programmable)
A_not_in -> P1; B_not_in -> P1; D_in -> P1;
A_not_in -> P2; B_not_in -> P2; C_in -> P2; D_not_in -> P2;
A_not_in -> P3; B_in -> P3; C_not_in -> P3; D_not_in -> P3;
A_in -> P4; B_not_in -> P4; C_not_in -> P4; D_not_in -> P4;
// Connections from AND gates to OR gate (programmable)
P1 -> F_out;
P2 -> F_out;
P3 -> F_out;
P4 -> F_out;
{rank=same; A_in A_not_in B_in B_not_in C_in C_not_in D_in D_not_in}
{rank=same; P1 P2 P3 P4}
{rank=same; F_out}
}
<<<GRAPHVIZ_END>>>
To design the clocked sequential circuit using JK flip-flops from the given state diagram, the following steps are undertaken:
-
Derivation of State Table:
The state diagram shows four states (00, 01, 10, 11) and a single input (X). Let Q1 and Q0 be the present states of the two JK flip-flops, where Q1 is the MSB and Q0 is the LSB. Q1' and Q0' represent the next states.Present State (Q1Q0) Input (X) Next State (Q1'Q0') 00 0 01 00 1 00 01 0 01 01 1 10 10 0 01 10 1 10 11 0 11 11 1 00 -
Excitation Table for JK Flip-Flops:
The JK flip-flop excitation table is used to determine the inputs (J and K) required to achieve a particular state transition.- Qn -> Qn+1 | J | K
- 0 -> 0 | 0 | X
- 0 -> 1 | 1 | X
- 1 -> 0 | X | 1
- 1 -> 1 | X | 0
Using this, the complete excitation table is generated:
| Q1 | Q0 | X | Q1' | Q0' | J1 | K1 | J0 | K0 |
| : | : | : | :-- | :-- | : | : | : | : |
| 0 | 0 | 0 | 0 | 1 | 0 | X | 1 | X |
| 0 | 0 | 1 | 0 | 0 | 0 | X | 0 | X |
| 0 | 1 | 0 | 0 | 1 | 0 | X | X | 0 |
| 0 | 1 | 1 | 1 | 0 | 1 | X | X | 1 |
| 1 | 0 | 0 | 0 | 1 | X | 1 | 1 | X |
| 1 | 0 | 1 | 1 | 0 | X | 0 | 0 | X |
| 1 | 1 | 0 | 1 | 1 | X | 0 | X | 0 |
| 1 | 1 | 1 | 0 | 0 | X | 1 | X | 1 | -
K-Maps for Flip-Flop Input Equations:
Karnaugh maps are used to simplify the Boolean expressions for J1, K1, J0, and K0 in terms of Q1, Q0, and X.a) K-map for J1:
Q1Q0\X 0 1 00 0 0 01 0 1 10 X X 11 X X Minimized expression: J1 = Q0X b) K-map for K1:
Q1Q0\X 0 1 00 X X 01 X X 10 1 0 11 0 1 Minimized expression: K1 = Q1Q0'X' + Q1Q0X = Q1(Q0'X' + Q0X) = Q1(Q0 XNOR X) c) K-map for J0:
Q1Q0\X 0 1 00 1 0 01 X X 10 1 0 11 X X Minimized expression: J0 = X' d) K-map for K0:
Q1Q0\X 0 1 00 X X 01 0 1 10 X X 11 0 1 Minimized expression: K0 = X -
Summary of Boolean Expressions:
- J1 = Q0X
- K1 = Q1(Q0'X' + Q0X)
- J0 = X'
- K0 = X
-
Logic Diagram:
The circuit will consist of two JK flip-flops (FF1 for Q1 and FF0 for Q0), and combinational logic gates to implement the J and K input equations. All flip-flops share a common clock input.
<<<GRAPHVIZ_START>>>
digraph G {
rankdir=LR;
node [shape=box style=filled fillcolor=lightgrey];
// Flip-flops
FF1 [label="JK FF\n(Q1)"];
FF0 [label="JK FF\n(Q0)"];
// Inputs
subgraph cluster_inputs {
label="Inputs";
style=filled;
fillcolor=white;
CLK [shape=triangle, label="Clock"];
X_in [label="X", shape=circle];
}
// Output wires from FFs
Q1_out [shape=none, label="Q1"];
Q1N_out [shape=none, label="Q1'"];
Q0_out [shape=none, label="Q0"];
Q0N_out [shape=none, label="Q0'"];
// Gates for J1
AND1_J1 [shape=and, label="AND"];
// Gates for K1
AND2_K1 [shape=and, label="AND"];
AND3_K1 [shape=and, label="AND"];
OR1_K1 [shape=or, label="OR"];
NOT1_K1 [shape=inv, label="NOT"]; // for Q0'
NOT2_K1 [shape=inv, label="NOT"]; // for X'
AND4_K1 [shape=and, label="AND"]; // for final K1 = Q1 AND (...)
// Gates for J0
NOT3_J0 [shape=inv, label="NOT"];
// Gates for K0
// K0 = X directly
// Connections to FF1 (Q1)
{Q0_out, X_in} -> AND1_J1;
AND1_J1 -> FF1:j; // J1 = Q0X
Q0_out -> AND2_K1;
X_in -> AND2_K1; // Q0X term
Q0_out -> NOT1_K1;
NOT1_K1 -> AND3_K1; // Q0'
X_in -> NOT2_K1;
NOT2_K1 -> AND3_K1; // X'
{AND2_K1, AND3_K1} -> OR1_K1; // (Q0X + Q0'X')
FF1:q -> AND4_K1; // Q1
OR1_K1 -> AND4_K1; // (Q0X + Q0'X')
AND4_K1 -> FF1:k; // K1 = Q1(Q0X + Q0'X')
// Connections to FF0 (Q0)
X_in -> NOT3_J0;
NOT3_J0 -> FF0:j; // J0 = X'
X_in -> FF0:k; // K0 = X
// Clock connections
CLK -> FF1:clk;
CLK -> FF0:clk;
// Output connections from FFs to general availability
FF1:q -> Q1_out;
FF1:qn -> Q1N_out;
FF0:q -> Q0_out;
FF0:qn -> Q0N_out;
// Direct connections for Q0 and X where used
FF0:q -> AND1_J1 [label="Q0"];
X_in -> AND1_J1 [label="X"];
FF1:q -> AND4_K1 [label="Q1"];
FF0:q -> NOT1_K1 [label="Q0"];
FF0:q -> AND2_K1 [label="Q0"];
X_in -> AND2_K1 [label="X"];
X_in -> NOT2_K1 [label="X"];
X_in -> NOT3_J0 [label="X"];
X_in -> FF0:k [label="X"];
}
<<<GRAPHVIZ_END>>>
The following details the PAL programming for the given combinational circuit.
1. Simplified Boolean Expressions (Sum-of-Products)
The minterms for each output are derived from the truth table:
- A = Σm(1, 2, 4, 6)
- B = Σm(1, 3, 6, 7)
- C = Σm(1, 2, 4, 6, 7)
- D = Σm(1, 2, 3, 5, 7)
Using Karnaugh Maps or algebraic simplification:
-
Output A:
A = X'Y'Z + X'YZ' + XY'Z' + XYZ'
A = X'Y'Z + YZ' + XY'Z' -
Output B:
B = X'Y'Z + X'YZ + XYZ' + XYZ
B = X'Z + XY -
Output C:
C = X'Y'Z + X'YZ' + XY'Z' + XYZ' + XYZ
C = X'Y'Z + YZ' + XY'Z' + XY -
Output D:
D = X'Y'Z + X'YZ' + X'YZ + XY'Z + XYZ
D = Z + X'YZ'
2. PAL Programming Table
The programming table lists the inputs (X, Y, Z and their complements) and the unique product terms required for the outputs. An 'X' marks a fuse to be blown in the AND array to create the product term. Another 'X' in the output column indicates that product term is connected to the OR gate for that output.
| Product Term (P-term) | X | X' | Y | Y' | Z | Z' | A | B | C | D |
|---|---|---|---|---|---|---|---|---|---|---|
| P1 = X'Y'Z | X | X | X | X | X | |||||
| P2 = YZ' | X | X | X | X | ||||||
| P3 = XY'Z' | X | X | X | X | X | |||||
| P4 = X'Z | X | X | X | |||||||
| P5 = XY | X | X | X | X | ||||||
| P6 = Z | X | X | ||||||||
| P7 = X'YZ' | X | X | X | X |
Note: In a PAL, the connections from product terms to the OR gates (marked with 'X' in the A, B, C, D columns) are fixed, meaning specific product terms are permanently routed to specific OR gates. The programmability lies solely in the AND array.
3. PAL Diagram (Fuses to be blown)
The following Graphviz DOT code generates a conceptual PAL diagram. The lines connecting inputs to product terms represent the programmable fuses in the AND array. The lines connecting product terms to outputs represent the fixed connections to the OR gates.
<<<GRAPHVIZ_START>>>
digraph PAL_Circuit {
rankdir=LR;
node [shape=box style="filled" fillcolor="lightgrey" fontname="Arial"];
subgraph cluster_inputs {
label = "Inputs";
X [label="X"];
X_prime [label="X'"];
Y [label="Y"];
Y_prime [label="Y'"];
Z [label="Z"];
Z_prime [label="Z'"];
}
node [shape=rect style="filled" fillcolor="lightblue" fontname="Arial"];
subgraph cluster_product_terms {
label = "Programmable AND Array (Fuses Blown)";
P1 [label="P1 = X'Y'Z"];
P2 [label="P2 = YZ'"];
P3 [label="P3 = XY'Z'"];
P4 [label="P4 = X'Z"];
P5 [label="P5 = XY"];
P6 [label="P6 = Z"];
P7 [label="P7 = X'YZ'"];
}
node [shape=invhouse style="filled" fillcolor="lightgreen" fontname="Arial"];
subgraph cluster_outputs {
label = "Fixed OR Array";
A [label="A"];
B [label="B"];
C [label="C"];
D [label="D"];
}
// Connections from Inputs to Product Terms (Representing Blown Fuses in AND array)
// P1 = X'Y'Z
X_prime -> P1 [label="X"]; Y_prime -> P1 [label="X"]; Z -> P1 [label="X"];
// P2 = YZ'
Y -> P2 [label="X"]; Z_prime -> P2 [label="X"];
// P3 = XY'Z'
X -> P3 [label="X"]; Y_prime -> P3 [label="X"]; Z_prime -> P3 [label="X"];
// P4 = X'Z
X_prime -> P4 [label="X"]; Z -> P4 [label="X"];
// P5 = XY
X -> P5 [label="X"]; Y -> P5 [label="X"];
// P6 = Z
Z -> P6 [label="X"];
// P7 = X'YZ'
X_prime -> P7 [label="X"]; Y -> P7 [label="X"]; Z_prime -> P7 [label="X"];
// Connections from Product Terms to Outputs (Fixed OR Array)
// A = P1 + P2 + P3
P1 -> A; P2 -> A; P3 -> A;
// B = P4 + P5
P4 -> B; P5 -> B;
// C = P1 + P2 + P3 + P5
P1 -> C; P2 -> C; P3 -> C; P5 -> C;
// D = P6 + P7
P6 -> D; P7 -> D;
{rank=same; X; X_prime; Y; Y_prime; Z; Z_prime;}
{rank=same; P1; P2; P3; P4; P5; P6; P7;}
{rank=same; A; B; C; D;}
}
<<<GRAPHVIZ_END>>>
Section B
Answer any two questions.
Decimal to Octal (7562.45 to octal)
-
Integer Part (7562): Repeated division by 8
- $7562 \div 8 = 945$ remainder $2$
- $945 \div 8 = 118$ remainder $1$
- $118 \div 8 = 14$ remainder $6$
- $14 \div 8 = 1$ remainder $6$
- $1 \div 8 = 0$ remainder $1$
- Reading remainders upwards: $16612_8$
-
Fractional Part (0.45): Repeated multiplication by 8
- $0.45 \times 8 = 3.60 \implies 3$
- $0.60 \times 8 = 4.80 \implies 4$
- $0.80 \times 8 = 6.40 \implies 6$
- $0.40 \times 8 = 3.20 \implies 3$
- Reading integers downwards: $.3463..._8$
-
Combined: $7562.45_{10} \approx 16612.3463_8$
Decimal to Hexadecimal (1938.257 to hexadecimal)
-
Integer Part (1938): Repeated division by 16
- $1938 \div 16 = 121$ remainder $2$
- $121 \div 16 = 7$ remainder $9$
- $7 \div 16 = 0$ remainder $7$
- Reading remainders upwards: $792_{16}$
-
Fractional Part (0.257): Repeated multiplication by 16
- $0.257 \times 16 = 4.112 \implies 4$
- $0.112 \times 16 = 1.792 \implies 1$
- $0.792 \times 16 = 12.672 \implies C$ (since $12_{10} = C_{16}$)
- $0.672 \times 16 = 10.752 \implies A$ (since $10_{10} = A_{16}$)
- Reading integers downwards: $.41CA..._{16}$
-
Combined: $1938.257_{10} \approx 792.41CA_{16}$
Decimal to Binary (175.175 to binary)
-
Integer Part (175): Repeated division by 2
- $175 \div 2 = 87$ remainder $1$
- $87 \div 2 = 43$ remainder $1$
- $43 \div 2 = 21$ remainder $1$
- $21 \div 2 = 10$ remainder $1$
- $10 \div 2 = 5$ remainder $0$
- $5 \div 2 = 2$ remainder $1$
- $2 \div 2 = 1$ remainder $0$
- $1 \div 2 = 0$ remainder $1$
- Reading remainders upwards: $10101111_2$
-
Fractional Part (0.175): Repeated multiplication by 2
- $0.175 \times 2 = 0.350 \implies 0$
- $0.350 \times 2 = 0.700 \implies 0$
- $0.700 \times 2 = 1.400 \implies 1$
- $0.400 \times 2 = 0.800 \implies 0$
- $0.800 \times 2 = 1.600 \implies 1$
- $0.600 \times 2 = 1.200 \implies 1$
- $0.200 \times 2 = 0.400 \implies 0$
- $0.400 \times 2 = 0.800 \implies 0$ (This sequence repeats)
- Reading integers downwards: $.00101100..._2$
-
Combined: $175.175_{10} \approx 10101111.00101100_2$
To express the Boolean Function F = A + B'C in a sum of minterms:
-
Identify variables: The function involves three variables: A, B, C.
-
Expand each term to include all variables:
-
For the term A:
A = A(B + B') = AB + AB'
AB = AB(C + C') = ABC + ABC'
AB' = AB'(C + C') = AB'C + AB'C'
So, A = ABC + ABC' + AB'C + AB'C' -
For the term B'C:
B'C = B'C(A + A') = AB'C + A'B'C
-
-
Combine all expanded terms:
F = (ABC + ABC' + AB'C + AB'C') + (AB'C + A'B'C) -
Remove duplicate terms: The term AB'C appears twice.
F = ABC + ABC' + AB'C + AB'C' + A'B'C -
Convert to minterm notation: Assign binary values (A=1, B=1, C=1 for unprimed; A=0, B=0, C=0 for primed literals).
- ABC = 111₂ = m₇
- ABC' = 110₂ = m₆
- AB'C = 101₂ = m₅
- AB'C' = 100₂ = m₄
- A'B'C = 001₂ = m₁
-
Express as a sum of minterms:
F = m₁ + m₄ + m₅ + m₆ + m₇Alternatively, using summation notation:
F = Σ(1, 4, 5, 6, 7)
To reduce the function F = B’D + A’BC’ + AB’C + ABC’ using a K-map, follow these steps:
-
Identify Minterms:
First, convert the given product terms into their corresponding minterms (1s) on a 4-variable K-map (variables A, B, C, D).B’D: Represents A- (don't care), B=0, C- (don't care), D=1.
Minterms:A'B'C'D (m1),A'B'CD (m3),AB'C'D (m9),AB'CD (m11)A’BC’: Represents A=0, B=1, C=0, D- (don't care).
Minterms:A'BC'D' (m4),A'BC'D (m5)AB’C: Represents A=1, B=0, C=1, D- (don't care).
Minterms:AB'CD' (m10),AB'CD (m11)ABC’: Represents A=1, B=1, C=0, D- (don't care).
Minterms:ABC'D' (m12),ABC'D (m13)
The complete set of minterms to be placed as '1's on the K-map is:
m1, m3, m4, m5, m9, m10, m11, m12, m13. -
Draw the K-map and Place 1s:
<<<GRAPHVIZ_START>>>
digraph KMap {
node [shape=plaintext];
// Create the K-map grid using a single node with an HTML table
KMapGrid [label=<
CD
00
01
11
10
AB
00
0
1
1
0
01
1
1
0
0
11
1
1
0
0
10
0
1
1
1
];
}
<<<GRAPHVIZ_END>>> -
Group the 1s:
Identify the largest possible groups of 1s (quads, pairs, octets) that are powers of 2 (1, 2, 4, 8...). Overlapping groups are allowed to cover all 1s with the fewest, largest possible groups.-
Group 1 (Quad - LightBlue):
Cells (0001), (0011), (1001), (1011) correspond to m1, m3, m9, m11.
Variables A and C change, B=0, D=1.
Simplified term: B'D -
Group 2 (Pair - LightGreen):
Cells (0100), (0101) correspond to m4, m5.
Variables A=0, B=1, C=0, D changes.
Simplified term: A'BC' -
Group 3 (Pair - Orange):
Cells (1100), (1101) correspond to m12, m13.
Variables A=1, B=1, C=0, D changes.
Simplified term: ABC' -
Group 4 (Pair - Gold):
Cell (1010) (m10) needs to be covered. It can be grouped with (1011) (m11).
Variables A=1, B=0, C=1, D changes.
Simplified term: AB'C
(Note: m11 is already covered by Group 1 (B'D), but this group is essential to cover m10.)
-
-
Write the Simplified Expression:
Combine all the simplified terms using OR operations.F = B'D + A'BC' + ABC' + AB'C
The reduced function is F = B'D + A'BC' + AB'C + ABC'.
In this specific case, the original function was already in its minimal Sum of Products form.
The design of the combinational circuit involves creating a truth table based on the given conditions and then deriving simplified Boolean expressions for each output.
Truth Table:
Inputs: x, y, z
Outputs: A, B, C
| x | y | z | Decimal Input | Decimal Output | A | B | C |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 2 | 0 | 1 | 0 |
| 0 | 1 | 0 | 2 | 3 | 0 | 1 | 1 |
| 0 | 1 | 1 | 3 | 4 | 1 | 0 | 0 |
| 1 | 0 | 0 | 4 | 3 | 0 | 1 | 1 |
| 1 | 0 | 1 | 5 | 4 | 1 | 0 | 0 |
| 1 | 1 | 0 | 6 | 5 | 1 | 0 | 1 |
| 1 | 1 | 1 | 7 | 6 | 1 | 1 | 0 |
Boolean Expressions (Simplified using K-maps):
For output A:
Minterms for A: m(3, 5, 6, 7)
A = xy + xz + yz
For output B:
Minterms for B: m(1, 2, 4, 7)
B = x'y'z + x'yz' + xy'z' + xyz
For output C:
Minterms for C: m(0, 2, 4, 6)
C = z'
Half Adder Implementation using 2-4 Decoder
A half adder produces a Sum and a Carry output from two binary inputs (A, B).
The truth table for a half adder is:
| A | B | Sum | Carry |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
A 2-4 decoder generates minterms corresponding to its select inputs. Connecting the half adder inputs (A, B) to the decoder's select inputs (S1, S0), where A = S1 and B = S0, yields the following outputs:
- Output D0 corresponds to A'B' (minterm m0)
- Output D1 corresponds to A'B (minterm m1)
- Output D2 corresponds to AB' (minterm m2)
- Output D3 corresponds to AB (minterm m3)
From the half adder truth table, the Sum and Carry outputs can be expressed using these minterms:
- Sum (S) = A'B + AB' = m1 + m2 = D1 + D2
- Carry (C) = AB = m3 = D3
Therefore, to implement a half adder using a 2-4 decoder:
- Connect inputs A and B to the select lines S1 and S0 of the 2-4 decoder, respectively.
- The Carry output is directly taken from the decoder output D3.
- The Sum output is generated by an OR gate with inputs D1 and D2.
<<<GRAPHVIZ_START>>>
digraph HalfAdder_2_4_Decoder {
rankdir=LR;
node [shape=rect, style=filled, fillcolor=lightgray];
// Inputs
A [label="A", shape=none];
B [label="B", shape=none];
// 2-4 Decoder
decoder [label="2-4\nDecoder", shape=rect, width=1.5, height=2.5, fillcolor=lightblue];
D0 [label="D0", shape=none];
D1 [label="D1", shape=none];
D2 [label="D2", shape=none];
D3 [label="D3", shape=none];
// OR Gate for Sum
OR_Sum [label="OR", shape=circle, fixedsize=true, width=0.8, height=0.8, fillcolor=lightgreen];
Sum [label="Sum", shape=none];
// Carry Output
Carry [label="Carry", shape=none];
// Connections
A -> decoder:s0 [label="S1"];
B -> decoder:s1 [label="S0"];
decoder:p0 -> D0; // D0
decoder:p1 -> D1; // D1
decoder:p2 -> D2; // D2
decoder:p3 -> D3; // D3
D1 -> OR_Sum;
D2 -> OR_Sum;
OR_Sum -> Sum;
D3 -> Carry;
// Subgraph for visual grouping of decoder outputs
subgraph cluster_outputs {
label="Decoder Outputs";
style=dashed;
D0; D1; D2; D3;
}
}
<<<GRAPHVIZ_END>>>
Difference between Serial and Parallel Transfer
- Serial Transfer:
- Transmits data one bit at a time over a single communication line.
- Slower speed due to sequential transmission.
- Requires fewer wires, making it suitable for long-distance communication and reducing cable cost.
- Example: USB, Ethernet.
- Parallel Transfer:
- Transmits multiple bits (e.g., 8, 16, 32 bits) simultaneously over multiple communication lines.
- Faster speed due to simultaneous transmission of an entire word or byte.
- Requires more wires, leading to higher cable cost and making it less suitable for long distances due to synchronization issues and crosstalk.
- Example: Internal computer buses, old printer ports (Centronics).
Converting Serial Data to Parallel Data
To convert serial data to parallel data, a Serial-In, Parallel-Out (SIPO) Shift Register is used. Data bits are fed into the shift register one bit at a time (serially) on consecutive clock pulses. After the desired number of bits (e.g., 8 bits for a byte) have been shifted into the register, all bits are available simultaneously at the parallel output lines of the register.
Converting Parallel Data to Serial Data
To convert parallel data to serial data, a Parallel-In, Serial-Out (PISO) Shift Register is used. The parallel data bits are loaded simultaneously into the shift register on a single clock pulse. Subsequent clock pulses then shift the data out of the register one bit at a time (serially) from the serial output line.
Type of Register Needed
The type of register needed for both conversions is a Shift Register. Specifically, a Serial-In, Parallel-Out (SIPO) shift register for serial-to-parallel conversion and a Parallel-In, Serial-Out (PISO) shift register for parallel-to-serial conversion.
An even parity generator produces a parity bit such that the total number of '1's (data bits plus parity bit) is an even number. For a 4-bit input (D3, D2, D1, D0), the parity bit (P) is generated by XORing all input bits.
-
Logic Equation:
P = D3 ⊕ D2 ⊕ D1 ⊕ D0 -
Circuit Diagram:
<<<GRAPHVIZ_START>>>
digraph G {
rankdir=LR;
node [shape=none, width=0.1, height=0.1]; // Make input/output labels small
edge [dir=none];// Input labels D0_lbl [label="D0", shape=none]; D1_lbl [label="D1", shape=none]; D2_lbl [label="D2", shape=none]; D3_lbl [label="D3", shape=none]; // Output label P_lbl [label="P", shape=none]; // XOR gates xor1 [shape=polygon, sides=3, regular=true, skew=0.4, label="", style=filled, fillcolor=lightgray, width=0.7, height=0.5]; xor2 [shape=polygon, sides=3, regular=true, skew=0.4, label="", style=filled, fillcolor=lightgray, width=0.7, height=0.5]; xor3 [shape=polygon, sides=3, regular=true, skew=0.4, label="", style=filled, fillcolor=lightgray, width=0.7, height=0.5]; // Invisible nodes for gate inputs/outputs to guide connections xor1_in1 [label="", width=0.01, height=0.01]; xor1_in2 [label="", width=0.01, height=0.01]; xor1_out [label="", width=0.01, height=0.01]; xor2_in1 [label="", width=00.01, height=0.01]; xor2_in2 [label="", width=0.01, height=0.01]; xor2_out [label="", width=0.01, height=0.01]; xor3_in1 [label="", width=0.01, height=0.01]; xor3_in2 [label="", width=0.01, height=0.01]; xor3_out [label="", width=0.01, height=0.01]; // Positioning for inputs and output {rank=same; D3_lbl; D2_lbl; D1_lbl; D0_lbl;} {rank=same; xor1; xor2; xor3;} P_lbl -> xor3_out [dir=back]; // P_lbl is output of xor3, adjust direction // Connections D0_lbl -> xor1_in1 [label="", style=solid]; D1_lbl -> xor1_in2 [label="", style=solid]; xor1_out -> xor2_in1 [label="", style=solid]; D2_lbl -> xor2_in2 [label="", style=solid]; xor2_out -> xor3_in1 [label="", style=solid]; D3_lbl -> xor3_in2 [label="", style=solid]; xor3_out -> P_lbl [label="", style=solid]; // Specific gate connection points D0_lbl -> xor1 [label="", constraint=false, headport=nw, tailport=e]; D1_lbl -> xor1 [label="", constraint=false, headport=sw, tailport=e]; xor1 -> xor2 [label="", constraint=false, headport=e, tailport=w]; D2_lbl -> xor2 [label="", constraint=false, headport=sw, tailport=e]; xor2 -> xor3 [label="", constraint=false, headport=e, tailport=w]; D3_lbl -> xor3 [label="", constraint=false, headport=sw, tailport=e]; xor3 -> P_lbl [label="", constraint=false, headport=e, tailport=w]; // More abstract representation for XOR gates subgraph cluster_xor1 { label="XOR1"; style=dotted; node [shape=record, label="{<in1>|<in2>|XOR|<out>}"]; gate1 [label="{D0 | D1 | XOR | P1}"]; } subgraph cluster_xor2 { label="XOR2"; style=dotted; node [shape=record, label="{<in1>|<in2>|XOR|<out>}"]; gate2 [label="{P1 | D2 | XOR | P2}"]; } subgraph cluster_xor3 { label="XOR3"; style=dotted; node [shape=record, label="{<in1>|<in2>|XOR|<out>}"]; gate3 [label="{P2 | D3 | XOR | P}"]; } // Connections between the abstract gates D0_lbl -> gate1:in1; D1_lbl -> gate1:in2; gate1:out -> gate2:in1; D2_lbl -> gate2:in2; gate2:out -> gate3:in1; D3_lbl -> gate3:in2; gate3:out -> P_lbl;}
<<<GRAPHVIZ_END>>>
A 4-bit binary ripple counter utilizing D flip-flops functions as an asynchronous up-counter where each flip-flop's output triggers the next.
-
Flip-Flop Configuration: Each D flip-flop is configured to operate in a toggle mode. This is achieved by connecting the D input of a flip-flop to its own inverted output (Q_bar). Therefore, for each DFF_i, $D_i = \overline{Q_i}$. This setup causes the flip-flop to change state (toggle) with each active clock edge.
-
Asynchronous Clocking Scheme:
- LSB Flip-Flop (FF0): The first flip-flop ($FF_0$, producing output $Q_0$) is clocked directly by the external system clock (CLK).
- Subsequent Flip-Flops (FF1, FF2, FF3): Each subsequent flip-flop ($FF_i$) is clocked by the non-inverted output ($Q_{i-1}$) of the preceding flip-flop.
- For positive edge-triggered D flip-flops, this configuration results in an upward counting sequence from 0000 to 1111.
-
Output: The combined outputs $Q_3 Q_2 Q_1 Q_0$ represent the 4-bit binary count.
<<<GRAPHVIZ_START>>>
digraph G {
rankdir=LR;
node [shape=record, fontname="Helvetica", fontsize=10];
// Define the D-FF nodes using record shape for distinct inputs/outputs
FF0 [label="{<D> D | D-FF0 (LSB) | <CLK> CLK}|{<Q> Q0 | <Qbar> Q0_bar}"];
FF1 [label="{<D> D | D-FF1 | <CLK> CLK}|{<Q> Q1 | <Qbar> Q1_bar}"];
FF2 [label="{<D> D | D-FF2 | <CLK> CLK}|{<Q> Q2 | <Qbar> Q2_bar}"];
FF3 [label="{<D> D | D-FF3 (MSB) | <CLK> CLK}|{<Q> Q3 | <Qbar> Q3_bar}"];
// External System Clock input
CLK_in [label="System Clock", shape=oval, fontname="Helvetica", fontsize=10];
// Connections
// 1. D input to Q_bar for toggle behavior
FF0:Qbar -> FF0:D;
FF1:Qbar -> FF1:D;
FF2:Qbar -> FF2:D;
FF3:Qbar -> FF3:D;
// 2. Asynchronous clocking
CLK_in -> FF0:CLK;
FF0:Q -> FF1:CLK;
FF1:Q -> FF2:CLK;
FF2:Q -> FF3:CLK;
// Arrange nodes horizontally for clarity
{rank=same; CLK_in; FF0; FF1; FF2; FF3;}
}
<<<GRAPHVIZ_END>>>
SIMM
- Single In-line Memory Module.
- A type of RAM module used in older personal computers (e.g., 386, 486, early Pentium systems).
- Features a single row of electrical contacts (pins) along one edge of the Printed Circuit Board (PCB), though physically pins may exist on both sides, they are electrically redundant.
- Common configurations included 30-pin (8-bit or 9-bit data path) and 72-pin (32-bit or 36-bit data path, including parity).
- Often required to be installed in multiples (e.g., pairs of 72-pin SIMMs for a 64-bit memory bus) to match the system's data bus width.
- Precursor to DIMMs (Dual In-line Memory Modules), which have independent contacts on both sides.
Parity Checker
- A digital logic circuit used for error detection in data transmission or storage.
- Purpose: To detect the occurrence of a single bit error within a data word.
- Mechanism: A parity bit is appended to the data word.
- Even Parity: The parity bit is set such that the total number of '1's in the data word, including the parity bit, is an even number.
- Odd Parity: The parity bit is set such that the total number of '1's in the data word, including the parity bit, is an odd number.
- Operation:
- Parity Generation: At the sender or writer, XOR gates calculate the appropriate parity bit for the data word.
- Parity Checking: At the receiver or reader, the incoming data word (including its parity bit) is passed through an identical XOR gate arrangement. If the final output is '1' (for even parity) or '0' (for odd parity), an error is detected.
- Limitation: Cannot correct errors and cannot detect an even number of bit errors (e.g., if two bits are flipped, the parity remains unchanged).